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Self-Diffusion in Simple Models: 
Systems with Long-Range Jumps 
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We review some exact results for the motion of a tagged particle in simple 
models. Then, we study the density dependence of the self-diffusion coetlicient 
D,v(p) in lattice systems with simple symmetric exclusion in which the particles 
can jump, with equal rates, to a set of N neighboring sites. We obtain positive 
upper and lower bounds on F u ( p ) =  N{( 1 - p )  - [D^,(p)/DN(O)]}/[p(I  - p ) ]  
for p ~ [0, 1 ]. Computer simulations for the square, triangular, and one-dimen- 
siona[ lattices suggest that F u becomes effectively independent of N for N>~ 20. 

KEY WORDS:  Self-diffusion; long-range jumps; diffusion constant; mean- 
field limit. 

1. I N T R O D U C T I O N  

Many properties of macroscopic systems are universal, retaining their 
qualitative features under drastic simplifications of the underlying micro- 
scopic structures. Thus, lattice gas models have greatly enhanced our 
understanding of phase transition phenomena in equilibrium systems. Their 
dynamical behavior, currently an active area of research, promises to be 
similarly fruitful for understanding nonequilibrium properties of macro- 
scopic systems. 

This article explores some aspects of self-diffusion in lattice models. 
After a brief overview of some rigorous results, we derive new results for 
systems with long-range jumps. It is dedicated to Matthieu H. Ernst, a leader 
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in the field of kinetic theory and lattice gases, on the occasion of his 60th 
birthday. 

We shall be concerned here with the motion of a tagged particle in an 
infinite interacting particle system. A tagged particle is exac t l y  like any 
other particle in the system; its "tag" permits us to follow its trajectory 
X(t ) .  This yields a relatively simple probe of time correlations in a system 
of interacting particles in an overall stationary state. 

The self-diffusion coefficient D.,. is defined, in an infinite stationary 
system without drift, as c~ 

D=I__ 1 
" 2d ,lim 7 ([X(t)-X(~ (1.1) 

where d is the spatial dimension of the system and the average ( . )  is over 
the stationary measure. We expect that in a real fluid the limit (1.1) will 
exist, be positive, and be given by the Einstein-Green-Kubo formula 

D.,. = -- d , - ~_lim (v(r)-v(O)) dr (1.2) 

where (v ( r ) .v (0) )  is the velocity autocorrelation function ~1: A simple 
computation gives 

( ( x ( t )  - x(0)) 2) =2 ;[ ( t - r ) (  v(r). v(0)) dr 

so (1.2) reduces to (1.1) when (v(r ) -v(0))  decays sufficiently rapidly. 
The self-diffusion coefficient is a global dynamical parameter associated 

with macroscopic system in equilibrium, i.e., spatially uniform. Therefore, 
it is generally different from the bulk diffusion coefficient which relates to 
the evolution of a nonuniform density in a nonstationary system. D, can be 
thought of as a color diffusion coefficient by considering the evolution of 
the relative density of two components of a system which differ only by a 
property, say color, that plays no role in the dynamics, while the overall 
system, ignoring color, is in a uniform state. ~c21 An approximate experi- 
mental realization of such a situation occurs when the components are 
isotopes of 3He atoms whose spins are polarized in different directions. 

Going beyond (1.1) and (1.2), we can introduce a "scaling" parameter 
e and define X,:(t) as e [ X ( t / e 2 ; . ) - X ( O ) ] ,  where the dot indicates the 
dependence of the trajectory on the coordinates and velocities of all the 
particles at t = 0. I t 2~ Typically, we expect that in the long-time limit, e ~ 0, 
the process {X,:(t), t e •} converges in probability--after subtracting out 
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any drif t-- to the law of a Brownian motion { Wo~(t), t e  R} with diffusion 
coefficient D,. given by ( 1.1 ).~ I" 21 We summarize this by 

lim X,:(t)= Wt~(t) (1.3) 
t : ~ O  

The behavior (1.1)-(1.3) has been proven for the one component, one- 
dimensional system of hard rods with diameter a. el" 3.41 For this idealized 
system D.,. can be computed exactly, 

1 --  p a  ~ '~- 
D . , . ( p ) = - - ( I v [ }  and (Ivl>= Ivlh(v) dv (1.4) 

Here h ( v ) = h ( - v )  is the one-particle velocity distribution function; this 
need not be Maxwellian, since collisions in this system merely exchange 
velocities. Noting that ( l / p - a )  is the mean free path in this system, the 
interpretation of (1.4) is very simple. On the other hand, the velocity 
autocorrelation function (v( r )  v(0)) depends nontrivially on h(v): it decays 
like an exponential when h(v) vanishes near v = 0 ,  and like t -3 when h(v) 
is Maxwellian. c5~ 

The only other continuum system for which the existence of the limits 
(1.1)-(1.3) has been proven is a system of interacting Brownian particles ~6" 7~ 
which models suspensions of polymers or even of small macroscopic balls 
in a fluid. Actually, one needs to assume ergodicity of the dynamics, and 
formula (1.2) has to be modified because instantaneous velocities are no 
longer well defined.I 1 

In d =  1, stochastic models in which the particles cannot cross each 
other behave differently from the mechanical model which yields (1.4): 
(X2( t ) )  ~ x/~t, so D,. = 0. '~8' Interestingly, however, x/~X(t/e ~- ;. ) still goes 
to a Gaussian process; see ref. 4 for a simple derivation of the one-dimen- 
sional results, 

2. LATTICE M O D E L S  

2.1. Gendral Dynamics 

We consider now systems with one type of particle whose total num- 
ber is the only quantity conserved by the dynamics. We expect, however, 
that much of our discussion will remain valid for models where momentum 
is also conservedJ 7"91 The stochastic dynamics of these systems consists of 
particles "jumping" between lattice sites. The jump from a site x to a site 
y on the lattice occurs with a rate c(x, y; ~/), where r/ is the configuration 
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of the system just prior to the jump: r /= {q(z)}, with r/(z) = 0, 1, 2 ..... 
specifying the number of particles at site z. We shall generally consider the 
d-dimensional (simple) cubic lattice Z a. 

The system will be in a stationary state with measure v whenever 

~,, c(x, y;  ~l) v(tl) = ~,, c(x, y ;  r/x'-'') v(r/''y) 
x ,  ) ,  _~', )" 

(2.1) 

where q"  ." is the configuration which arises from r/ after a particle has 
jumped from x to y. A simple way to satisfy (2.1) is to have the equality 
hold for each term in the sum. The rates are then said to satisfy detailed 
balance with respect to v. In such cases v can be written in the form of a 
Gibbs measure, Vcq(~l)~exp[-f lH(q)],  where H(q) is the energy of a 
configuration r/, and fl the reciprocal temperature: see ref. 10 for a detailed 
discussion of Gibbs measures. Detailed balance then corresponds to 

c(x, y; q)/e(y, x; q'-"-") = exp{ - - f l [H(q"  .") - H(y/)] } (2.2) 

In the probability literature a stationary process whose rates satisfy 
detailed balance is called reversible: a film of the system in the stationary 
state would look the same if run backward. 

The trajectory X(t) now takes values on the lattice. However, after 
scaling with ~ and letting e ~  0, as in (1.3), the limit will again be a con- 
tinuous process. 

2.2. Models Without Exclusion 

One of the simplest dynamics for a system of particles on a lattice is 
the so-called "zero-range" process. ~ This corresponds to the jump rates 
e(x, y; q) depending only on r/(x), the number of particles at site x, 

c(x, y; q) = 2g(q(x) ) p ( y -  x) (2.3) 

Here 2 is a constant, 2 > 0, while g and p satisfy the conditions 

g(0) = 0, g(k) > 0, for k > 0 (2.4) 

p(0) = 0, p(r)>~O, ~ p(r) = 1 (2.5) 
r ~ Z  d 

measures for this dynamics in the macroscopic 
limit are a translation-invariant family of product 

The stationary 
(infinite-volume) 
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measures vp parametrized by the average densityJ ~t~ The probability of 
having exactly j particles at any given site is 

b j 
.Wi=G(j)  W o, j=O,  1,2 .... (2.6) 

where 

J 
a(o)  = 1, G(j )  = ~ g(/),  j~> 1 (2.7) 

I = l  

and the parameters b and W o are determined by the normalization and the 
specified average density, p ~> 0, i.e., 

~, IV./= 1 and j W j = p  (2.8) 
j = 0  j = 0  

An easy check shows that these measures satisfy the detailed balance condi- 
tion (2.2), with f i l l (q)  a sum of single-site energies equal to - l o g  Wj, if 
and only i f p ( r ) = p ( - r ) .  

Two particular cases of the zero-range process deserve mention. When 
g(l) = l the dynamics corresponds to that of independent particles. This 
gives rise to the Poisson distribution 

Wj = (p J/j!) e -P (2.9) 

Taking g ( l ) =  1 -,5o. ~, corresponding to only the "top" particle jumping, 
yields a geometric stationary distribution 

l( )J 
Wj= 1 +p  ~ (2.10) 

The stationary measure seen from the tagged particle is the "Palm 
measure" 

~,,(q) = q(O) v,, 

P 

As the "waiting time" of the tagged particle depends on the number of 
particles at the same site, its average jump rate is given by 

~.= ~ 'l"k Wk, with 2k=2g(k) (2.11) 
k = l  P 
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Let Xt,- be the displacement after K steps of the random walk specified 
by transition probability p(r). Assuming for simplicity that there is no drift, 

~ ( r ) = 0  (2.12) 

we have 

<xl .+  ,> = <(x,,. + r,..)-" > = <x l .>  + < r~,.> (2.13) 

where Yx is the displacement of the particle at the ( K +  1)th step. Clearly, 

< r~,.) = Z ,- 'p(,) = 2 &  (2.14) 

and 

(X~.) = 2/)o K (2.15) 

A little thought shows that for the zero-range process, the trajectory of the 
tag will look the same as the trajectory of a single particle performing a 
random walk on the lattice with transition probabilities p(r). The only 
difference is that the "waiting time" at any site will generally depend on the 
number of particles there. In fact/9~ As soon as the process is ergodic, the 
scaled trajectory X,:(t) satisfies (1.3) with 

D(p) = 2(p) D,, 

Ergodicity is easy to show for g ( k ) = k ,  and was shown in the case 
g ( k ) =  1 --6k.o in ref. 12. In fact, (1.3) is proven in ref. 13 for all g(k). 

For the case of independent particles, ~. is independent of p and equal 
to 2, while for g ( k ) =  1 - ~k.O, 

2 
~ ( p )  = 

l + p  

so that D(p) decreases with density for this case. The opposite behavior is 
clearly also possible. 

Looking back on our arguments leading to (2.15), we see that the 
main ingredients are the independence of the step YK from the past history 
of the process (e.g., Xk is a martingale). This means that (2.15) should 
remain valid whenever 

c(x, y; rl) = h(q; x) p (y  - x) (2.16) 
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i.e., as long as c ( x , x + r ; ~ l ) / c ( x , x + r ' ; r l )  is independent of ~ (and, by 
translation invariance, of x). 

A particular example of (2.16) is (a generalization of) a model due to 
van Beijeren, (14) in which 

k 

c(x, y; q) = )-" 2;gi(r/(x)) p~(y - - x )  
i = l  

with the gi and p; satisfying the conditions (2.4), (2.5), and (2.12). The 
stationary measure is now not known in general. In fact, we expect that it 
will have very long range correlations, (14) yet (1.1) and (1.3) should still be 
valid with 

&p) = '~(p) Z r%(r) 
i 

where 2(p) is the average rate in the stationary measure. 

Remark. It is clear that the diffusion constants D and /~o are, for 
anisotropic p(r), the traces of the corresponding positive-definite diffusion 
tensors D and Do. When (2.12) holds and p(r) is isotropic with respect to 
the lattice directions, D is diagonal. 

2.3. Models  w i th  Exclusion 

We consider now the case where there is a hard-core interaction 
between the particles, forbidding the presence of more than one particle at 
any lattice site. The configurations of the system are now given by r/= 
{q(x)} with q(x)=O or 1 and c(x, y; r/)=O when r / (y)= 1. The simplest 
dynamics for these systems correspond to the so-called simple exclusion 
processes, in which the jump rate from a site x to a site y is independent 
of the configuration at other sites of the lattice, 

c(x, y; r/) = 2r/(x)( 1 - q ( y ) )  p(y  - x )  

with p(r) satisfying (2.5). 
The translation-invariant stationary measure v,,, with 0 ~< p ~< 1, will 

again be a product measure with 

Wo= l - p ,  Wi =p,  W/=O for j>~2 

The v,, will, as before, satisfy detailed balance if and only if the jump rates 
are symmetric, p(r) = p( - r). 
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The behavior of a tag trajectory X(t) is now considerably more com- 
plicated than in the zero-range process. In particular, knowledge of the past 
history of X(t) will influence the probabilities that certain sites are empty 
and hence the future position of the trajectory. 

The proof that (1.1)-(1.3) hold for these models was given by Kipnis 
and Varadhan c6~ for the reversible case with short range interactions. 
Spohn c22~ then proved that ifd~>2, then D(p) > 0  when p < 1; if d =  1, then 
D(p) = 0 unless p(r) > 0 for [r[ > I. For the nonreversible case satisfying 
(2.12) the result is due to Varadhan. tlS~ As already mentioned, in d =  1, 
with jumps limited to nearest neighbor sites, p(1 ) = p( - 1) = �89 the mean 
square displacement only grows like x/~. tS~ 

In the asymmetric case, with p ( 1 ) = p ,  p ( - 1 ) =  1 - p ,  p >  �89 (1.1) still 
holds after subtraction of the drift, i.e., for f~(t)=X(t)-vt ,  where the 
velocity v is given by v=(2p-1 ) (1 -p ) .  This was proven for d = l  by 
Kipnis ~61 and for d>~3 by Varadhan and Yau, ~7~ who also prove (1.3) 
(there is no proof for d =  2). Somewhat surprisingly, the diffusion constant 
for ,~(t) in d =  1 is equal to the drift D(p)=(1 --p)(2p-- 1). C~6~ 

The dependence of D on p is not known even for the simple exclusion 
process. It is intuitively clear that D(p)~  0 as p---, 1. Varadhan tlSI proved 
that the so-called "correlation factor" D(p)/[ 1 - p ]  is a decreasing function 
of p bounded away from zero as p ~ 1. This confirms the behavior found 
in numerical results for nearest neighbor jumps. 1191 He also showed that 
D(p) is continuous in all dimensions and that for d/> 3, D(p) is Lipshitz, 
e.g., ID(p)- D(p')[ < c IP-  P'I. 

Remark. We remark here for completeness that many authors 
(beginning with Einstein) have studied situations where there is a special 
particle with a different dynamics than the other particles of the system: 
in particular, the case where an external field acts only on the special 
particle/II Though we will not discuss this problem here in any detail, 
we want to mention that recently Landim eta/. (2~ studied a one-dimen- 
sional system where the special particle jumps with probability p > 1/2 to 
the right and 1 - p  to the left--with an exclusion rule--while all the 
other particles follow a symmetric dynamics with p = 1/2 (recall that the 
self-diffusion constant is zero in this systemCS~). They showed that X~(t) 
converges in probability to a number v(t) which solves a differential 
equation and depends on the initial macroscopic density profile. Their 
result holds for a large class of initial profiles. For instance, when the 
initial measure is a product Bernouilli measure of density p, they showed that 

o(t)=(2p-t) l - p  .,/-i 
P 
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3. LONG RANGE J U M P S  

We discuss now the situation where particles make jumps to a sym- 
metric neighborhood U, containing N sites, with equal probability, p(r) = 
N -  l for r e U, p(r) = 0 otherwise. We shall be interested in the behavior of 
the diffusion constant Du(p)  and the suitably scaled trajectory XN(t) when 
N becomes large. Intuitively, as N increases, the tag is less likely to revisit, 
during a fixed number of jumps, a previously occupied site and hence there 
will be less and less memory left of previous jumps. The only effect of the 
hard-core exclusion will then be to slow down the jump rates by a factor 
( 1 - p ) ,  the fraction of attempted jumps which are unsuccessful due to the 
target site being occupied. Intuitively this will lead to a density-independent 
correlation factor, D~(p) / [  DN(0)( 1 -- p) ], in the limit N ~ ov: this limit is 
analogous to the van der Waals or mean-field limit in equilibrium systems 
when the particles interact via a long-range Kac potential. ~2~) 

Since our dynamics is reversible the result of Kipnis and Varadhan 16~ 
applies, so that for each N 

and one expects that 

exN(te  -2) 
lim _ _  - W~(t) (3.1) 

DN(p) 
lim = 1 - -p  (3.2) 

N . . . .  DN(O ) 

Actually, we show more: 

Proposition. Set C N ( p ) = D N ( O ) ( 1 - - p ) - - D N ( p ) .  Then there are 
positive constants c~ and c2 such that 

N C u(p )  < C,, gp e [0, 1 ] (3.3) 
Cl < . F N ( p ) = p ( l _ p ) D y ( O )  _ 

The proof  of the proposition is given in the Appendix. 
In order to determine the behavior of DN(p), we have performed 

numerical simulations in one and two dimensions with periodic boundary 
conditions at different densities. The average of [XN(t )]  2 over many 
realizations (from 100 to 1000) was plotted against t and fit to a straight 
line passing through the origin. The fitted slope is then taken for the diffu- 
sion coefficient. 

The one-dimensional lattice had 2000 sites. Typically, 200 realizations 
were run for I000 time steps. The maximum N considered was 100. In two 
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Fig. I. Simulation results of the quantity Fx(p) versus tile density p. Results ol 'simulations in 
one-dimensional lattices are represented by circles, in a square lattice by squares, an in the tri- 
angular  lattices by triangles. The number  of neighbors is shown ill the key. The slope of Fx(p)  
as a function ofp appears to be independent of the  dimension or the type of lattice. The intercept, 
on tile contrary, appears to depend on the dimension, but not on the lattice structure. 

dimensions, square and triangular lattices were used, with 200 x 200 lattice 
sites. Three hundred realizations were run for about 500 time steps and 
N~<90. Simulations with larger N were also run, but the statistical 
accuracy was not enough to extract any information beyond the zeroth- 
order one. In Fig. 1 we plot F,v(p) vs. p for the square, triangular, and one- 
dimensional lattices lbr different values of N: the set U to which the particle 
jumps being the N closest neighbors as measured by the number of bonds 
required to reach the site. It appears that F:v(p) varies linearly in p with 
a slope independent of dimensions. 

A P P E N D I X .  P R O O F  OF THE P R O P O S I T I O N  

We will work in the moving frame of the tag particle and for simplicity 
write the proof for cubic lattices. Thus, U = { y r  Ilyl[ ~<n} and N =  
(2n + 1 )d_ 1. The generator of this process is --A with 

1 
Af(q) = ~. ~ (1 --q(Y))(fO1)-f(r.,.q)) 

I 'E U 

1 1 
+ ~  2 Z (./(1/)- f(T,.,.t/)) 

. v e Z ' t \ 1 0 }  y e a ' + U  
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where T,:,,q = q"  "', f.,. shifts the configuration by a vector y, and we have 
denoted g,.(To,.) by r,.. The process seen from the tag particle is reversible 
with respect to f,,,(q)=v~,(qlq(O)=l) with p in [0, 1]. The expectation 
with respect to g~, is denoted by E ~'. 

It is well known ~1~ that if S, is the semigroup generated by A 

DN(p) = DN(0)(1 - - p ) -  (Stw, w)dt 
) 

D N ( 0 ) = I  y,. y ~ , 7  2 
II y l l  ~< n 

1 
w(q) = ~  Z y,(~(Y)-,1(y)) 

II y l l  ~< n .  Yl > 0 

where y = (yL ..... Yd), .v = ( - Y,, )'2 ..... Yd), and because the diffusion matrix 
is diagonal, we chose w to be the current in the e, direction. Note that 
CN(p) = ~ (S,w, w) dt. 

We introduce the normalized variables 

( r / ( y ) - p )  such that E [r,.r.,.] 6,. P ~ . . .1" r.,. x / ~ l _ p )  

A1. C,v(p)<~(p(1-p)n2/n a 

Recalling a variational formula used in ref. 17, 

Vx, 

(EP[ wf] )2 
C,v(p) = sup 

leone,, E ' [ f A f ]  

we just need to show that for any local function f ,  

17 2 
(E"[ wf] )2 ~< 6p( 1 -- p) ~ E " [ f A f ]  

Now, 

E,'[,q'] -P) y' y, E,'[(,-,,- r.,.) f ]  
N 

II .vi i  ~< u ,  .L' I > 0 

_ ~ 1  -p) 
2 N 

I l y l l  ~ < , . . v l  > 0  

y,E"[r,.(T,...,., f - f ) ]  
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First, we fix (y~ ..... y,'~) and work  on the line y = ( y , , y ~ _  ..... y~',) for 
y~ e [ - n ,  n] .  For  each y~ > 1, there are y~ - 1 different ways of  joining ,17 
and y in three steps (37, ke~ + )7, (k, y~ ..... y;',), y) with k = 1 ..... y ,  - 1 while 
remaining on the line joining y and  )7. It  is impor tan t  to note  that  ke t + )7 
is at y~ units f rom (k, y~ ..... y~',), and thus as yl  ranges f rom 2 to n, a given 
pair  of  sites on the same line will be used at  mos t  once. Now,  with the 
nota t ions  k I = kel + )7 and k2 = (k, y~,..., y',',), 

T~', .v - I =  T<k, Tkl,k2Tk 2. .vTI,'l,I,'2Te, I," , - -  To 

= T I  T2 T3 T4 T5 -- To 

5 

111 : I 

[ T o . . .  T m _ I ] ( T m -  To) 

Also, the produc t  measure  being invar iant  under  exchanges,  we have 

V i n e [ l ,  5] ,  E ~ , , [ T o T ~ . . . T , , , _ I ] ( T , , f - f ) - E  r , . , , (T , , , f - f )  

where y,,, belongs to { )7, k~, k 2, y}. 
Now,  if Yt, Y_, belong to a line parallel to el ,  we want  to "split" 

T.,,,. . , .--which arose in our  previous d e c o m p o s i t i o n - - i n t o  T,.,.-- and T:..,'2 
where z is a c o m m o n  neighbor,  y~ and Y2 will have of the order  of  n d 
c o m m o n  neighbors  if II Y t - Y2 II ~< n. However ,  for each neighbor,  say z, the 
pair  (y~, z) will be used at mos t  2n times because in our  line, yl  has 2n 
neighbors  at most .  Thus,  we end up with 

d 
y t E "  Ir,.(T,~ . f - f ) l  <~nd_IIT ~ E p I r ~ , ( T , . . , . f - f ) l  

II y l l  ~< ,i, . q  > o II.v - .vii ~< n 

II y l l  ~< n 

where 6 depends just on the dimension d, and ), is an innocuous  index 
different for each pair  (x, y). 

Denot ing  by T,,, a generic exchange ope ra to r  and  ), an arb i t ra ry  index 
and using the Cauchy  inequality 

" ~<(E"[r~] E"[ , t/, IE [r~,(T,,,f - f ) ] l  ( T m f  - f ) -  ]) - 

= ~ /E"[ (  T m f - f ) 2 ]  
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gives 

E"[wf]2 <~ { d x/p(l -p)N Z 
I Ix  - .vii ~< - 

I ly l l  ~<,, 

1 x/EP[(T,..,,f_f)2]} 2 
~ d -  I 

2 1 F 1 -I 2 
~<p(1--p)d ~22[n,---7~_lJ (n") 2 

n 2 

~ e ~ p ( 1 - p ) S P [ f A f ]  

~, E,,E(T,_ .,,f _f)2] 
Ix - yl  <~ n 

.v vv~O 

and the first inequality follows. 

A2. CN(p) >1 cp(1 - p) n2/rl d 

Choose f = ~ It.,,, ~ ...... , > o r.,., and write 

E/,[fAf] ~< 1 { 
N o < Ilyll ~< n 

E/'[(r.,.f - f )  2] +~ 
I Ix  - y l l  ~ n 

x v # O  

E"[(T,...,.f - f )2]}  

The reason to choose such an f is that 

1 2 > n 2 p ( l - p )  E:[wf]2=P(I~ p) ( 2n)a- '  L Y, "1" 8 
.V I = I 

Now, r,.r.,, is equal to r,.+.,, i f y r  - x  and to r.,. if y =  - x ,  so, for any y, it 
is easy to see that 

EP[(r.,.f-f) 2] <~N 

Thus, 

Z p . "~ E [ ( % f - - f ) - ]  ~<N 2 
O <  Ilyll ~<,~ 

Now, it is also easy to see that 

Z 
IIx - y l l  ~ n 

x , y ~ O  

,o 3 E [(T,- , ,f--f)-] <~ N2 
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and thus 

I,/- CN(p)>~p(] -p) 

which completes the proof. II 

ACKNOWLEDGMENTS 

We thank C. Landim, S. Olla, M. S. Ripoll, and H. T. Yau for useful 
discussions. This work was supported by NSF Grant 92-13424 4-20946. 
R.B. was also supported by D.G.I.C. y T. (Spain), project PB94-0265. 

REFERENCES 

I. H. Spohn, Large Scale Dynamics oJ lnterac'ting Particles (Springer-Verlag, Berlin, 1991 ): 
J. L. Lebowitz and H. Spohn, J. Star. Phys, 28:539 ( 1982}. 

2. J. Quastel, Commun. Pure Appl. Math. 40:623-679 {1992). 
3. F. Spitzer, J. Math. Mech. 18:973 (1968). 
4. D. Durr, S. Goldstein, and J. L. Lebowitz, Phys. Rev. Lett. 57:1986; Commun. Pure Appl. 

Math. 38:573 (1985). 
5. J. L. Lebowitz, J. Percus, and J. Sykes, Phys. Rer. 188:487 (1969): J, L. Lebowitz and 

J, Sykes, J. Sta/. Ph.vs. 6:157 171 (1974). 
6. C. Kipnis and S. R. S. Varadhan, Commun. Math. Phys. 106:1-19 (1986): M. Z. Guo and 

G. Papanicolaou, in Proceedings Taniguchi Sj,mposium(Kyoto, 1985). 
7. A. de Masi, P. Ferrari, S. Goldstein, and D. Wick, J. Stat. Ph),s. 55:787-855 (1985). 
8. R. Arratia, Amt. Prob. 11:362 373 (1983). 
9. H. J. Bussemaker, J. Dufty, and M. Ernst, J. Sta/. Ph),s. 78:1521 (1995): R. Esposito, 

R. Marra, and H. T. Yau, Rev. Math. Ph.vs. 6:1233 1267 (1994). 
10. R. Fernandez, A. Sokal, and A, van Enter, J. Sta/. Phys. 72:879-1167 (1993). 
I1. F. Spitzer, Adv. Math. 5:246-290 (1970). 
12. E. Saada, Ann. Inst. H. Poincar~ Proh. Star. 26(1):5 17 (1990). 
13. P. Sift, Ph.D. thesis, Torino (1996). 
14. H. wm Beijeren, J. Sta/. Pit vs. 60:845 (1990}. 
15. S. R. S. Varadhan, Ann, Inst. H. Poincark Prob. Star. 31:273 285 (1995). 
16. C. Kipnis, Am1. Prob. 14:397~1-08 (1986). 
17. S. R. S. Varadhan and H. T. Yau, Private communication (1996). 
18. S. R. S. Varadhan, Preprint (1993). 
19. K. Kerr and K. Binder, in Application of  the Monte Carlo Method in Statistical Physics 

(Berlin, Springer, 1984). 
20. C. Landim, S. Olla, and S. B. Volchan, Preprint 96. 
21. G. Giacomin and J. L. Lebowitz, Phys. Rev. Lett. 76:1094-1097 (1996}. 
22. H. Spohn, J. Sta/. Phys. 59:1227 (1990). 


